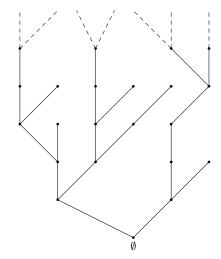
Marches aléatoires λ -biaisées sur un arbre de Galton-Watson

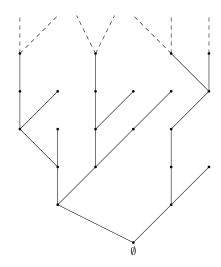
Loïc de Raphelis

Vendredi 29 août 2014

Soit $\mathbb T$ un arbre enraciné, et $\lambda>0$ un réel positif.

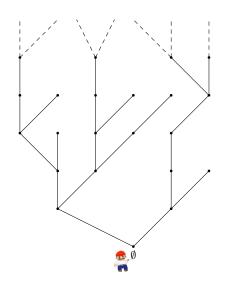


Soit $\mathbb T$ un arbre enraciné, et $\lambda>0$ un réel positif. On définit $(X_n^{\mathbb T})_{n\in\mathbb N}$ la marche aléatoire λ -biaisée sur $\mathbb T$ comme suit :



Soit \mathbb{T} un arbre enraciné, et $\lambda > 0$ un réel positif.

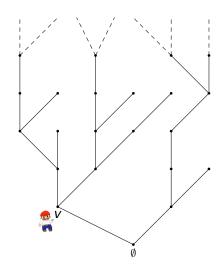
On définit $(X_n^{\mathbb{T}})_{n\in\mathbb{N}}$ la marche aléatoire λ -biaisée sur \mathbb{T} comme suit :



• La marche aléatoire commence en la racine $\emptyset: X_0 = \emptyset$ p.s.

Soit $\mathbb T$ un arbre enraciné, et $\lambda>0$ un réel positif.

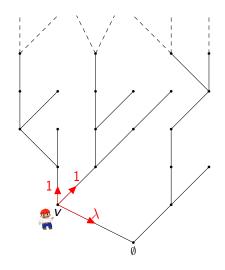
On définit $(X_n^{\mathbb{T}})_{n\in\mathbb{N}}$ la marche aléatoire λ -biaisée sur \mathbb{T} comme suit :



- La marche aléatoire commence en la racine $\emptyset: X_0 = \emptyset$ p.s.
- Si pour $n \in \mathbb{N}$ on a $X_n = v$, où $v \in \mathbb{T}$, alors

Soit \mathbb{T} un arbre enraciné, et $\lambda > 0$ un réel positif.

On définit $(X_n^{\mathbb{T}})_{n\in\mathbb{N}}$ la marche aléatoire λ -biaisée sur \mathbb{T} comme suit :



- La marche aléatoire commence en la racine $\emptyset: X_0 = \emptyset$ p.s.
- Si pour $n \in \mathbb{N}$ on a $X_n = v$, où $v \in \mathbb{T}$, alors

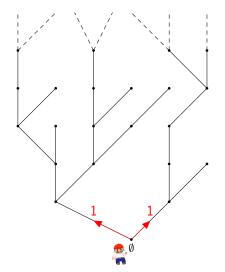
$$P(X_{n+1} = x | X_n = v) = \frac{1}{\lambda + d_v}$$

Pour tout $x \in C_v$, et

$$P(X_{n+1} = \Pi v | X_n = v) = \frac{\lambda}{\lambda + d_v}$$

Soit \mathbb{T} un arbre enraciné, et $\lambda > 0$ un réel positif.

On définit $(X_n^{\mathbb{T}})_{n\in\mathbb{N}}$ la marche aléatoire λ -biaisée sur \mathbb{T} comme suit :



- La marche aléatoire commence en la racine $\emptyset: X_0 = \emptyset$ p.s.
- Si pour $n \in \mathbb{N}$ on a $X_n = v$, où $v \in \mathbb{T}$, alors

$$P(X_{n+1} = x | X_n = v) = \frac{1}{\lambda + d_v}$$

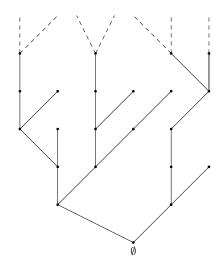
Pour tout $x \in C_{v}$, et

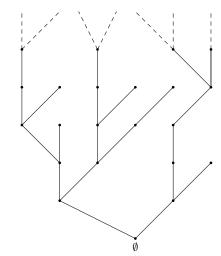
$$P(X_{n+1} = \Pi v | X_n = v) = \frac{\lambda}{\lambda + d_v}$$

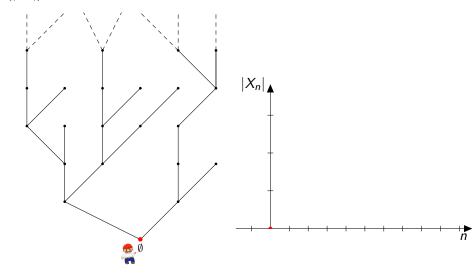
$$(P(X_{n+1} = \{i\}|X_n = \emptyset) = \frac{1}{d_{\emptyset}}$$

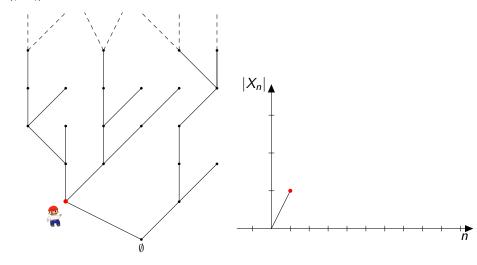
$$\forall k \leq d_{\emptyset}$$

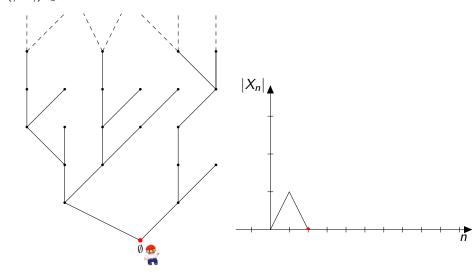
Soit $\mathbb T$ un arbre fixé, $\lambda>0$, $(X_n)_{n\in\mathbb N}$ la marche aléatoire sur $\mathbb T.$

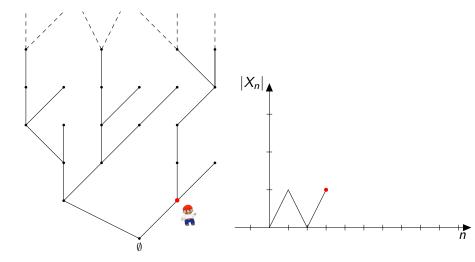


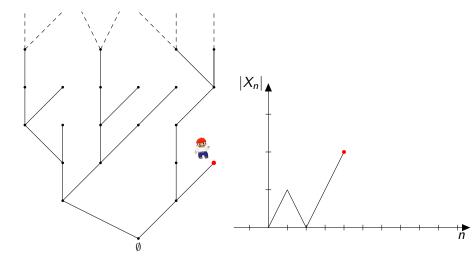


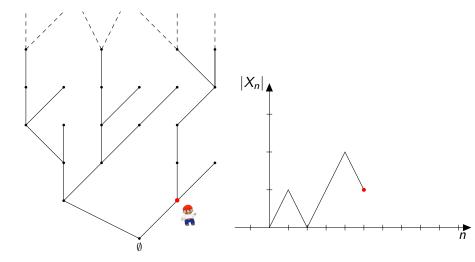


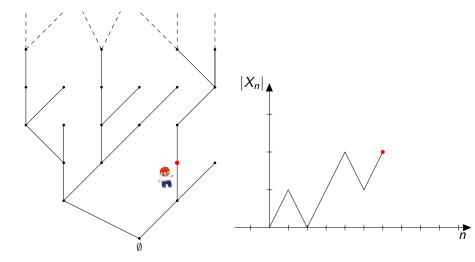


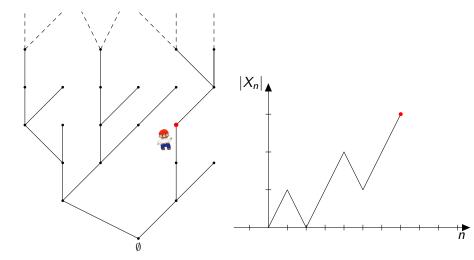


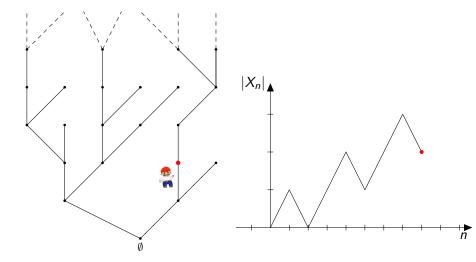


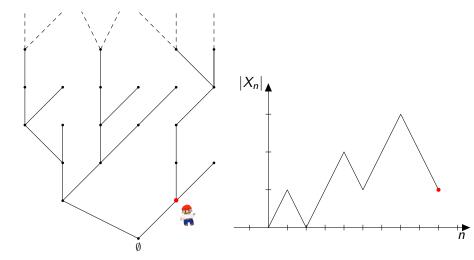








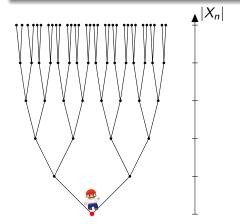


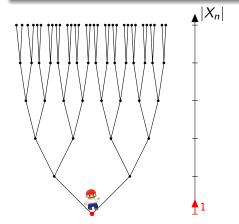


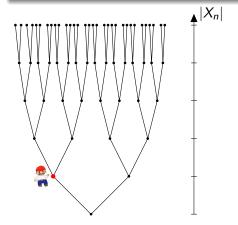
La question qui nous intéresse est la suivante :

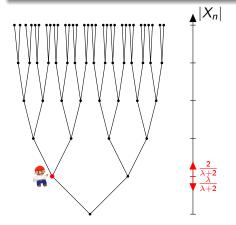
La question qui nous intéresse est la suivante :

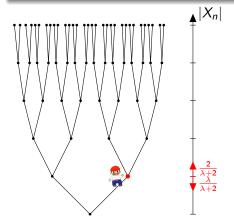
Quel est le comportement de $|X_n|$ lorsque $n \to +\infty$?

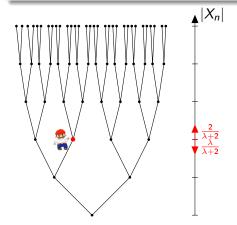


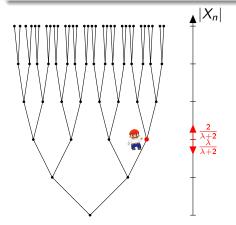


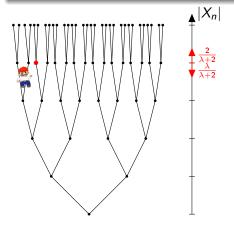


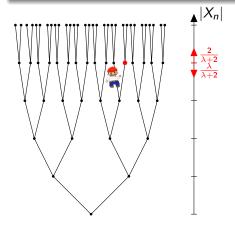




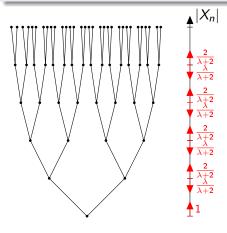






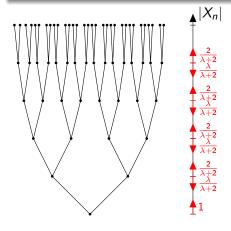


Supposons que \mathbb{T} soit l'arbre binaire.



 $(|X_n|)_{n\in\mathbb{N}}$ est la marche aléatoire simple sur $\mathbb{Z}_+.$

Supposons que \mathbb{T} soit l'arbre binaire.

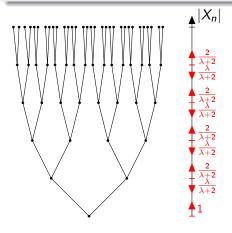


 $(|X_n|)_{n\in\mathbb{N}}$ est la marche aléatoire simple sur \mathbb{Z}_+ .

Celle-ci est

- transiente ssi $\lambda < 2$,
- récurrente nulle ssi $\lambda=2$
- récurrente positive ssi $\lambda > 2$.

Supposons que \mathbb{T} soit l'arbre binaire.



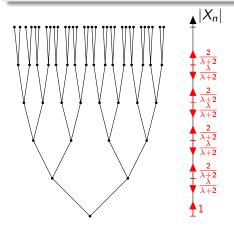
 $(|X_n|)_{n\in\mathbb{N}}$ est la marche aléatoire simple sur \mathbb{Z}_+ .

Celle-ci est

- transiente ssi $\lambda < 2$,
- récurrente nulle ssi $\lambda=2$
- récurrente positive ssi $\lambda > 2$.

 $(X_n)_{n\in\mathbb{N}}$ a les mêmes propriétés.

Supposons que \mathbb{T} soit l'arbre binaire.



 $(|X_n|)_{n\in\mathbb{N}}$ est la marche aléatoire simple sur \mathbb{Z}_+ .

Celle-ci est

- transiente ssi $\lambda < 2$,
- récurrente nulle ssi $\lambda=2$
- récurrente positive ssi $\lambda > 2$.

 $(X_n)_{n\in\mathbb{N}}$ a les mêmes propriétés.

 \wedge Attention! En général, $(|X_n|)_{n\in\mathbb{N}}$ n'est pas markovien.

Marche aléatoire biaisée sur un arbre de Galton-Watson

Soit μ une loi de reproduction, et $m = E[\mu]$, $\sigma^2 = Var(\mu)$.

Marche aléatoire biaisée sur un arbre de Galton-Watson

Soit μ une loi de reproduction, et $m=\mathbf{E}[\mu]$, $\sigma^2=Var(\mu)$. Posons GW_μ^* la loi de l'arbre de Galton-Watson de loi de reproduction μ conditionné à survivre.

Soit μ une loi de reproduction, et $m=\mathbf{E}[\mu]$, $\sigma^2=Var(\mu)$. Posons GW_μ^* la loi de l'arbre de Galton-Watson de loi de reproduction μ conditionné à survivre.

Lyons '90'

Si m>1 et $\sigma^2<+\infty$, alors pour presque tout GW_μ^* \mathbb{T} ,

Soit μ une loi de reproduction, et $m=\mathbf{E}[\mu]$, $\sigma^2=Var(\mu)$. Posons GW_μ^* la loi de l'arbre de Galton-Watson de loi de reproduction μ conditionné à survivre.

Lyons '90

Si m>1 et $\sigma^2<+\infty$, alors pour presque tout GW_μ^* $\mathbb T$,

• Si $\lambda > m$, alors $(X_n^{\mathbb{T}})_{n \in \mathbb{N}}$ est récurrent positif.

Soit μ une loi de reproduction, et $m=\mathbf{E}[\mu]$, $\sigma^2=Var(\mu)$. Posons GW_μ^* la loi de l'arbre de Galton-Watson de loi de reproduction μ conditionné à survivre.

Lyons '90

Si m>1 et $\sigma^2<+\infty$, alors pour presque tout GW_μ^* \mathbb{T} ,

- Si $\lambda > m$, alors $(X_n^{\mathbb{T}})_{n \in \mathbb{N}}$ est récurrent positif.
- Si $\lambda = m$, alors $(X_n^{\mathbb{T}})_{n \in \mathbb{N}}$ est récurrent nul.

Soit μ une loi de reproduction, et $m=\mathbf{E}[\mu]$, $\sigma^2=Var(\mu)$. Posons GW_μ^* la loi de l'arbre de Galton-Watson de loi de reproduction μ conditionné à survivre.

Lyons '90

Si m>1 et $\sigma^2<+\infty$, alors pour presque tout GW_μ^* \mathbb{T} ,

- Si $\lambda > m$, alors $(X_n^{\mathbb{T}})_{n \in \mathbb{N}}$ est récurrent positif.
- Si $\lambda=m$, alors $(X_n^{\mathbb{T}})_{n\in\mathbb{N}}$ est récurrent nul.
- Si $\lambda < m$, alors $(X_n^{\mathbb{T}})_{n \in \mathbb{N}}$ est transiente.

Soit μ une loi de reproduction, et $m=\mathbf{E}[\mu]$, $\sigma^2=Var(\mu)$. Posons GW_μ^* la loi de l'arbre de Galton-Watson de loi de reproduction μ conditionné à survivre.

Lyons '90

Si m>1 et $\sigma^2<+\infty$, alors pour presque tout GW_μ^* \mathbb{T} ,

- Si $\lambda > m$, alors $(X_n^{\mathbb{T}})_{n \in \mathbb{N}}$ est récurrent positif.
- Si $\lambda=m$, alors $(X_n^{\mathbb{T}})_{n\in\mathbb{N}}$ est récurrent nul.
- Si $\lambda < m$, alors $(X_n^{\mathbb{T}})_{n \in \mathbb{N}}$ est transiente.

Nous allons nous intéresser au cas $\lambda = m$

Peres & Zeitouni '06

Soit μ une loi de reproduction telle que $\mu(0) = 0$ et $\sigma^2 < +\infty$.

Peres & Zeitouni '06

Soit μ une loi de reproduction telle que $\mu(0) = 0$ et $\sigma^2 < +\infty$.

Alors il existe une constante explicite $\Sigma > 0$ telle que, pour μ -presque tout arbre de GW \mathbb{T} , sous \mathbf{P}_{λ} ,

Peres & Zeitouni '06

Soit μ une loi de reproduction telle que $\mu(0)=0$ et $\sigma^2<+\infty$.

Alors il existe une constante explicite $\Sigma>0$ telle que, pour μ -presque tout arbre de GW \mathbb{T} , sous \mathbf{P}_{λ} ,

$$\left(\frac{|X_{\lfloor nt\rfloor}^{\mathbb{T}}|}{\sqrt{n}}, t \geq 0\right) \underset{n \to \infty}{\overset{d}{\longrightarrow}} \left(\frac{2}{\Sigma}|B_t|, t \geq 0\right)$$

Peres & Zeitouni '06

Soit μ une loi de reproduction telle que $\mu(0)=0$ et $\sigma^2<+\infty$.

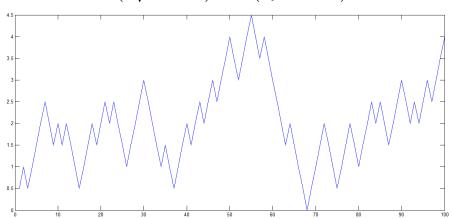
Alors il existe une constante explicite $\Sigma>0$ telle que, pour μ -presque tout arbre de GW \mathbb{T} , sous \mathbf{P}_{λ} ,

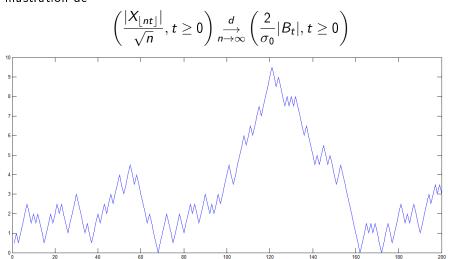
$$\left(\frac{|X_{\lfloor nt\rfloor}^{\mathbb{T}}|}{\sqrt{n}}, t \geq 0\right) \underset{n \to \infty}{\overset{d}{\longrightarrow}} \left(\frac{2}{\Sigma}|B_t|, t \geq 0\right)$$

où B est un mouvement brownien standard, et où la convergence a lieu pour la topologie de Skorokhod dans $\mathbb{D}(\mathbb{R}_+,\mathbb{R})$ l'espace des fonctions càdlàg.

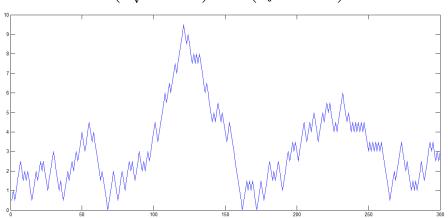
$$\left(\frac{|X_{\lfloor nt\rfloor}|}{\sqrt{n}}, t \geq 0\right) \underset{n \to \infty}{\overset{d}{\longrightarrow}} \left(\frac{2}{\sigma_0} |B_t|, t \geq 0\right)$$

$$\left(\frac{|X_{\lfloor nt\rfloor}|}{\sqrt{n}}, t \geq 0\right) \mathop{\to}\limits_{n \to \infty}^d \left(\frac{2}{\sigma_0}|B_t|, t \geq 0\right)$$





$$\left(\frac{|X_{\lfloor nt\rfloor}|}{\sqrt{n}}, t \geq 0\right) \mathop{\to}\limits_{n \to \infty}^d \left(\frac{2}{\sigma_0}|B_t|, t \geq 0\right)$$



$$\left(\frac{|X_{\lfloor nt\rfloor}|}{\sqrt{n}}, t \geq 0\right) \overset{d}{\underset{n \to \infty}{\longrightarrow}} \left(\frac{2}{\sigma_0}|B_t|, t \geq 0\right)$$

50

100

150

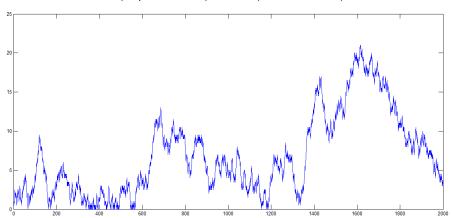
200

250

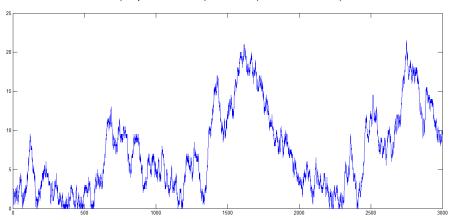
300

$$\left(\frac{\left|X_{\lfloor nt\rfloor}\right|}{\sqrt{n}},t\geq 0\right) \underset{n\to\infty}{\overset{d}{\underset{n\to\infty}{\longrightarrow}}} \left(\frac{2}{\sigma_0}|B_t|,t\geq 0\right)$$

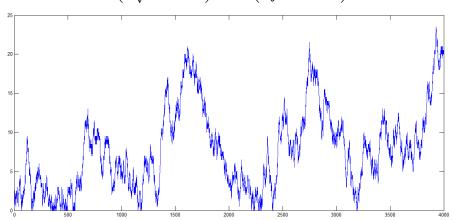
$$\left(\frac{|X_{\lfloor nt\rfloor}|}{\sqrt{n}}, t \geq 0\right) \mathop{\to}\limits_{n \to \infty}^d \left(\frac{2}{\sigma_0}|B_t|, t \geq 0\right)$$



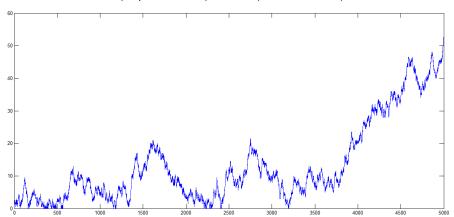
$$\left(\frac{|X_{\lfloor nt\rfloor}|}{\sqrt{n}}, t \geq 0\right) \overset{d}{\underset{n \to \infty}{\longrightarrow}} \left(\frac{2}{\sigma_0} |B_t|, t \geq 0\right)$$



$$\left(\frac{|X_{\lfloor nt\rfloor}|}{\sqrt{n}}, t \geq 0\right) \mathop{\to}\limits_{n \to \infty}^d \left(\frac{2}{\sigma_0}|B_t|, t \geq 0\right)$$

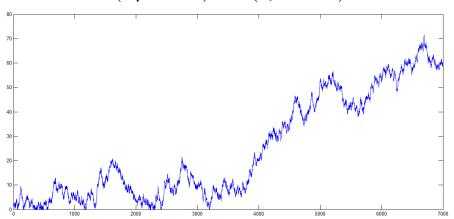


$$\left(\frac{|X_{\lfloor nt\rfloor}|}{\sqrt{n}}, t \geq 0\right) \mathop{\to}\limits_{n \to \infty}^d \left(\frac{2}{\sigma_0}|B_t|, t \geq 0\right)$$

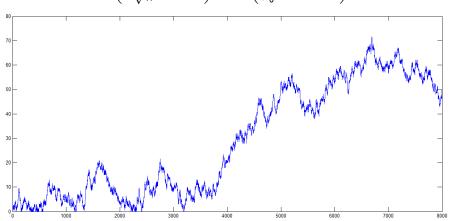


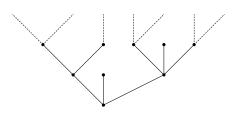
$$\left(\frac{|X_{\lfloor nt\rfloor}|}{\sqrt{n}}, t \geq 0\right) \underset{n \to \infty}{\overset{d}{\longrightarrow}} \left(\frac{2}{\sigma_0}|B_t|, t \geq 0\right)$$

$$\left(\frac{|X_{\lfloor nt\rfloor}|}{\sqrt{n}}, t \geq 0\right) \mathop{\to}\limits_{n \to \infty}^d \left(\frac{2}{\sigma_0}|B_t|, t \geq 0\right)$$



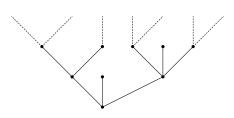
$$\left(\frac{|X_{\lfloor nt\rfloor}|}{\sqrt{n}}, t \geq 0\right) \underset{n \to \infty}{\overset{d}{\longrightarrow}} \left(\frac{2}{\sigma_0} |B_t|, t \geq 0\right)$$



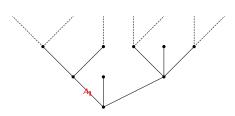


• Soit T un arbre de GW surcritique conditionné à survivre

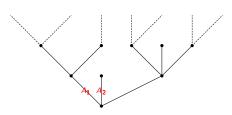
Ce théorème a été étendu à un modèle plus large en 2008 par G. Faraud :



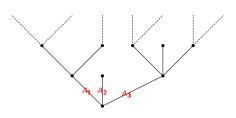
- ullet Soit ${\mathbb T}$ un arbre de GW surcritique conditionné à survivre
- $(A_x)_{x\in\mathbb{T}}$ des variables aléatoires i.i.d. telles que $\mathbf{E}[A]=\frac{1}{m}$



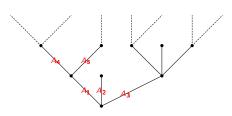
- ullet Soit ${\mathbb T}$ un arbre de GW surcritique conditionné à survivre
- $(A_x)_{x \in \mathbb{T}}$ des variables aléatoires i.i.d. telles que $\mathbf{E}[A] = \frac{1}{m}$



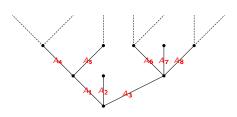
- ullet Soit ${\mathbb T}$ un arbre de GW surcritique conditionné à survivre
- $(A_x)_{x \in \mathbb{T}}$ des variables aléatoires i.i.d. telles que $\mathbf{E}[A] = \frac{1}{m}$



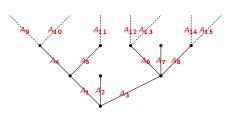
- ullet Soit ${\mathbb T}$ un arbre de GW surcritique conditionné à survivre
- $(A_x)_{x \in \mathbb{T}}$ des variables aléatoires i.i.d. telles que $\mathbf{E}[A] = \frac{1}{m}$



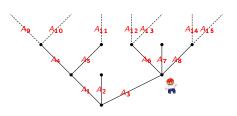
- ullet Soit ${\mathbb T}$ un arbre de GW surcritique conditionné à survivre
- $(A_x)_{x \in \mathbb{T}}$ des variables aléatoires i.i.d. telles que $\mathbf{E}[A] = \frac{1}{m}$



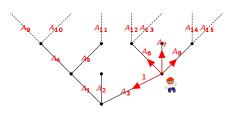
- ullet Soit ${\mathbb T}$ un arbre de GW surcritique conditionné à survivre
- $(A_X)_{X\in\mathbb{T}}$ des variables aléatoires i.i.d. telles que $\mathbf{E}[A]=\frac{1}{m}$



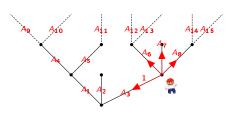
- ullet Soit ${\mathbb T}$ un arbre de GW surcritique conditionné à survivre
- $(A_x)_{x \in \mathbb{T}}$ des variables aléatoires i.i.d. telles que $\mathbf{E}[A] = \frac{1}{m}$



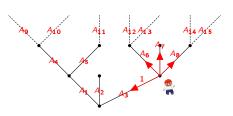
- ullet Soit ${\mathbb T}$ un arbre de GW surcritique conditionné à survivre
- ullet $(A_x)_{x\in\mathbb{T}}$ des variables aléatoires i.i.d. telles que $\mathbf{E}[A]=rac{1}{m}$
- Les probabilités de transition sont proportionnelles à $(A_x)_{x\in\mathbb{T}}$



- ullet Soit ${\mathbb T}$ un arbre de GW surcritique conditionné à survivre
- ullet $(A_x)_{x\in\mathbb{T}}$ des variables aléatoires i.i.d. telles que $\mathbf{E}[A]=rac{1}{m}$
- Les probabilités de transition sont proportionnelles à $(A_x)_{x\in\mathbb{T}}$



- ullet Soit ${\mathbb T}$ un arbre de GW surcritique conditionné à survivre
- $(A_x)_{x \in \mathbb{T}}$ des variables aléatoires i.i.d. telles que $\mathbf{E}[A] = \frac{1}{m}$
- Les probabilités de transition sont proportionnelles à $(A_x)_{x \in \mathbb{T}}$ (cas λ -biaisé : $A_i = \frac{1}{m}$ p.s.)



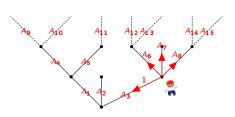
- ullet Soit ${\mathbb T}$ un arbre de GW surcritique conditionné à survivre
- $(A_x)_{x \in \mathbb{T}}$ des variables aléatoires i.i.d. telles que $\mathbf{E}[A] = \frac{1}{m}$
- Les probabilités de transition sont proportionnelles à $(A_x)_{x\in\mathbb{T}}$ (cas λ -biaisé : $A_i = \frac{1}{m}$ p.s.)

Faraud '08

Supposons que E $\left|\sum_{i=1}^{N(\emptyset)}A_i^8
ight|<1$ (resp. E $\left|\sum_{i=1}^{N(\emptyset)}A_i^5
ight|<1$) .

Alors il existe une constante explicite $\Sigma > 0$ telle que, pour μ -presque tout arbre de GW \mathbb{T} , under P_{λ} (resp. under $P_{\lambda,GW_{\alpha}^*}$)

Ce théorème a été étendu à un modèle plus large en 2008 par G. Faraud :



- ullet Soit ${\mathbb T}$ un arbre de GW surcritique conditionné à survivre
- $(A_x)_{x \in \mathbb{T}}$ des variables aléatoires i.i.d. telles que $\mathbf{E}[A] = \frac{1}{m}$
- Les probabilités de transition sont proportionnelles à $(A_x)_{x \in \mathbb{T}}$ (cas λ -biaisé : $A_i = \frac{1}{m}$ p.s.)

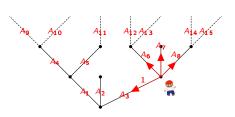
Faraud '08

Supposons que $\mathsf{E}\Big[\sum_{i=1}^{N(\emptyset)}A_i^8\Big] < 1$ (resp. $\mathsf{E}\Big[\sum_{i=1}^{N(\emptyset)}A_i^5\Big] < 1$) .

Alors il existe une constante explicite $\Sigma > 0$ telle que, pour μ -presque tout arbre de GW \mathbb{T} , under \mathbf{P}_{λ} (resp. under $\mathbf{P}_{\lambda,GW_{\sigma}^{*}}$)

$$\left(\frac{|X_{\lfloor nt\rfloor}^{\mathbb{T}}|}{\sqrt{n}}, t \geq 0\right) \underset{n \to \infty}{\overset{d}{\longrightarrow}} \left(\frac{2}{\Sigma}|B_t|, t \geq 0\right)$$

Ce théorème a été étendu à un modèle plus large en 2008 par G. Faraud :



- ullet Soit ${\mathbb T}$ un arbre de GW surcritique conditionné à survivre
- $(A_x)_{x \in \mathbb{T}}$ des variables aléatoires i.i.d. telles que $\mathbf{E}[A] = \frac{1}{m}$
- Les probabilités de transition sont proportionnelles à $(A_x)_{x\in\mathbb{T}}$ (cas λ -biaisé : $A_i=\frac{1}{m}$ p.s.)

Faraud '08

Supposons que $\mathsf{E}\Big[\sum_{i=1}^{N(\emptyset)}A_i^8\Big]<1$ (resp. $\mathsf{E}\Big[\sum_{i=1}^{N(\emptyset)}A_i^5\Big]<1$).

Alors il existe une constante explicite $\Sigma > 0$ telle que, pour μ -presque tout arbre de GW \mathbb{T} , under \mathbf{P}_{λ} (resp. under $\mathbf{P}_{\lambda,GW_{\pi}^{*}}$)

$$\left(\frac{|X_{\lfloor nt\rfloor}^{\mathbb{T}}|}{\sqrt{n}}, t \geq 0\right) \underset{n \to \infty}{\overset{d}{\longrightarrow}} \left(\frac{2}{\Sigma}|B_t|, t \geq 0\right)$$

pour la topologie de Skorokhod sur $\mathbb{D}(\mathbb{R}_+,\mathbb{R})$.

Nous proposons une méthode pour démontrer ces théorèmes sous des conditions optimales, méthode basée sur la trace de $(X_n)_{n\in\mathbb{N}}$.

Nous proposons une méthode pour démontrer ces théorèmes sous des conditions optimales, méthode basée sur la trace de $(X_n)_{n\in\mathbb{N}}$. Afin de pouvoir observer ce qu'est la trace de $(X_n)_{n\in\mathbb{N}}$, notre marcheur doit revêtir son habit de peintre :

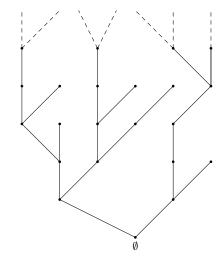
Nous proposons une méthode pour démontrer ces théorèmes sous des conditions optimales, méthode basée sur la trace de $(X_n)_{n\in\mathbb{N}}$. Afin de pouvoir observer ce qu'est la trace de $(X_n)_{n\in\mathbb{N}}$, notre marcheur doit revêtir son habit de peintre :

Nous proposons une méthode pour démontrer ces théorèmes sous des conditions optimales, méthode basée sur la trace de $(X_n)_{n\in\mathbb{N}}$. Afin de pouvoir observer ce qu'est la trace de $(X_n)_{n\in\mathbb{N}}$, notre marcheur doit revêtir son habit de peintre :

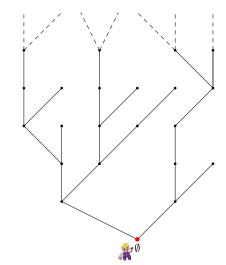
 \mathcal{T}^n (trace de $(X_n^{\mathbb{F}})_{n\in\mathbb{N}}$ jusqu'au temps n) :

 $\mathcal{T}^n := \{ x \in \mathbb{T} \mid \exists k \le n, X_k = x \}.$

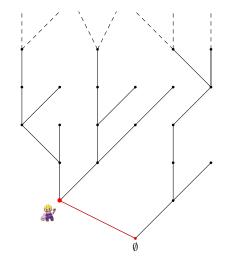
$$\mathcal{T}^n := \{ x \in \mathbb{T} \mid \exists k \le n, X_k = x \}.$$



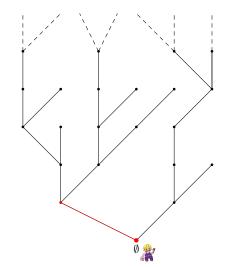
$$\mathcal{T}^n := \{ x \in \mathbb{T} \mid \exists k \le n, X_k = x \}.$$



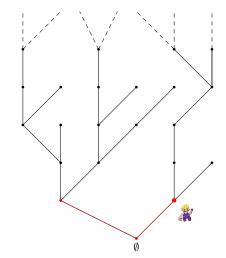
$$\mathcal{T}^n := \{ x \in \mathbb{T} \mid \exists k \le n, X_k = x \}.$$



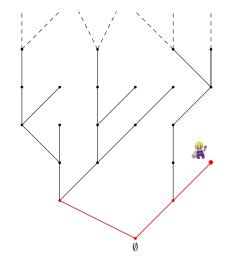
$$\mathcal{T}^n := \{ x \in \mathbb{T} \mid \exists k \le n, X_k = x \}.$$



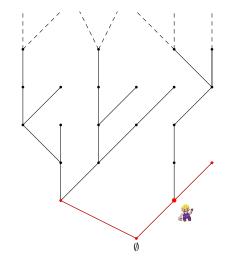
$$\mathcal{T}^n := \{ x \in \mathbb{T} \mid \exists k \le n, X_k = x \}.$$



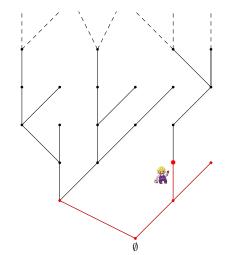
$$\mathcal{T}^n := \{ x \in \mathbb{T} \mid \exists k \le n, X_k = x \}.$$



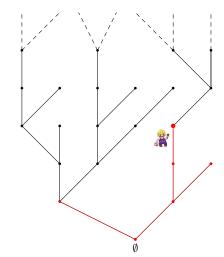
$$\mathcal{T}^n := \{ x \in \mathbb{T} \mid \exists k \le n, X_k = x \}.$$



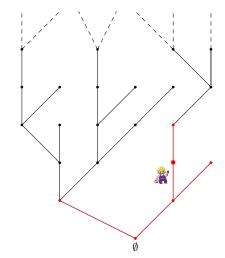
$$\mathcal{T}^n := \{ x \in \mathbb{T} \mid \exists k \le n, X_k = x \}.$$



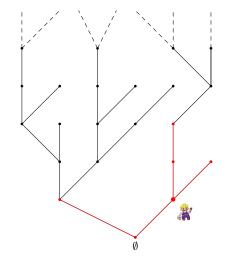
$$\mathcal{T}^n := \{ x \in \mathbb{T} \mid \exists k \le n, X_k = x \}.$$



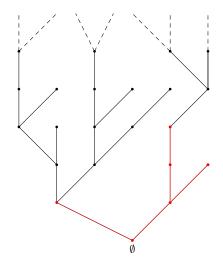
$$\mathcal{T}^n := \{ x \in \mathbb{T} \mid \exists k \le n, X_k = x \}.$$



$$\mathcal{T}^n := \{ x \in \mathbb{T} \mid \exists k \le n, X_k = x \}.$$



$$\mathcal{T}^n := \{ x \in \mathbb{T} \mid \exists k \le n, X_k = x \}.$$



Arbre rouge = \mathcal{T}^9

Soit μ une loi de reproduction sur-critique, et $(A_x)_x$ des variables aléatoires positives i.i.d. .

Soit μ une loi de reproduction sur-critique, et $(A_x)_x$ des variables aléatoires positives i.i.d. .

E. Aidekon & R. '14

Supposons que $\mathbf{E}\Big[\sum_{i=1}^{N(\emptyset)}A_i^2\Big]<1$.

Soit μ une loi de reproduction sur-critique, et $(A_x)_x$ des variables aléatoires positives i.i.d. .

E. Aidekon & R. '14

Supposons que $\mathbf{E}\left[\sum_{i=1}^{N(\emptyset)} A_i^2\right] < 1$.

Alors il existe une constante explicite Σ telle que, pour μ -presque tout arbre de GW \mathbb{T} , sous P_{λ} (ou sous $P_{\lambda,GW_{\sigma}^{*}}$)

•

Soit μ une loi de reproduction sur-critique, et $(A_x)_x$ des variables aléatoires positives i.i.d. .

E. Aidekon & R. '14

Supposons que $\mathbf{E}\left[\sum_{i=1}^{N(\emptyset)} A_i^2\right] < 1$.

Alors il existe une constante explicite Σ telle que, pour μ -presque tout arbre de GW \mathbb{T} , sous \mathbf{P}_{λ} (ou sous $\mathbf{P}_{\lambda,GW_{\mu}^*}$)

$$\left(\left(\frac{|X_{\lfloor nt\rfloor}^{\mathbb{T}}|}{\sqrt{n}}, t \geq 0\right), \mathcal{T}^n\right) \underset{n \to \infty}{\overset{d}{\longrightarrow}} \left(\left(\frac{2}{\Sigma}|B_t|, t \geq 0\right), \mathcal{T}((\frac{2}{\Sigma}|B_t|)_{0 \leq t \leq 1})\right)$$

,

Soit μ une loi de reproduction sur-critique, et $(A_x)_x$ des variables aléatoires positives i.i.d. .

E. Aidekon & R. '14

Supposons que $\mathbf{E}\left[\sum_{i=1}^{N(\emptyset)} A_i^2\right] < 1$.

Alors il existe une constante explicite Σ telle que, pour μ -presque tout arbre de GW \mathbb{T} , sous \mathbf{P}_{λ} (ou sous $\mathbf{P}_{\lambda,GW_{\mu}^*}$)

$$\left(\left(\frac{|X_{\lfloor nt\rfloor}^{\mathbb{T}}|}{\sqrt{n}}, t \geq 0\right), \mathcal{T}^n\right) \underset{n \to \infty}{\overset{d}{\longrightarrow}} \left(\left(\frac{2}{\Sigma}|B_t|, t \geq 0\right), \mathcal{T}((\frac{2}{\Sigma}|B_t|)_{0 \leq t \leq 1})\right)$$

où $\mathcal{T}(\frac{2}{\Sigma}|B|)$ est l'arbre réel codé par $\frac{2}{\Sigma}|B|$,

Soit μ une loi de reproduction sur-critique, et $(A_x)_x$ des variables aléatoires positives i.i.d. .

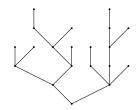
E. Aidekon & R. '14

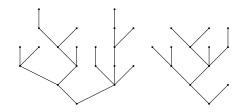
Supposons que $\mathbf{E}\left[\sum_{i=1}^{N(\emptyset)} A_i^2\right] < 1$.

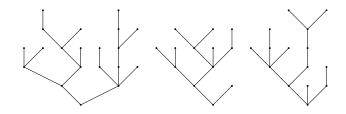
Alors il existe une constante explicite Σ telle que, pour μ -presque tout arbre de GW \mathbb{T} , sous \mathbf{P}_{λ} (ou sous $\mathbf{P}_{\lambda,GW_{\sigma}^{*}}$)

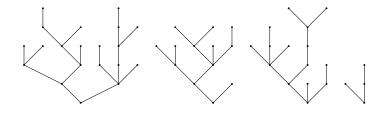
$$\left(\left(\frac{|X_{\lfloor nt\rfloor}^{\mathbb{T}}|}{\sqrt{n}}, t \geq 0\right), \mathcal{T}^n\right) \underset{n \to \infty}{\overset{d}{\longrightarrow}} \left(\left(\frac{2}{\Sigma}|B_t|, t \geq 0\right), \mathcal{T}((\frac{2}{\Sigma}|B_t|)_{0 \leq t \leq 1})\right)$$

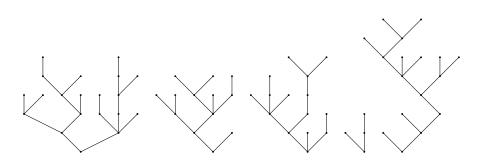
où $\mathcal{T}(\frac{2}{\Sigma}|B|)$ est l'arbre réel codé par $\frac{2}{\Sigma}|B|$, et où la convergence a lieu pour la topologie de Skorokhod sur $\mathbb{D}(\mathbb{R}_+,\mathbb{R})$ et la topologie de Gromov-Haussdorff sur les arbres réels.



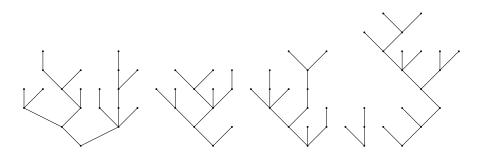




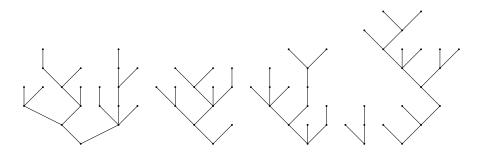




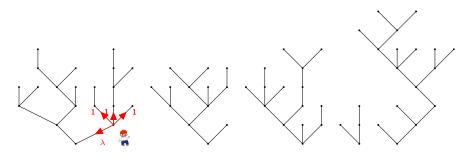
Soit \mathbb{T}_1 , \mathbb{T}_2 , ..., \mathbb{T}_n , ... une suite d'arbres de Galton-Watson de loi de reproduction μ sur-critique ($m=\mathbf{E}[\mu]>1$) à variance finie. $\bigcup_{n\in\mathbb{N}}\mathbb{T}_n$ forme une forêt notée \mathbb{F} .



Soit \mathbb{T}_1 , \mathbb{T}_2 , ..., \mathbb{T}_n , ... une suite d'arbres de Galton-Watson de loi de reproduction μ sur-critique ($m = \mathbf{E}[\mu] > 1$) à variance finie. $\bigcup_{n \in \mathbb{N}} \mathbb{T}_n$ forme une forêt notée \mathbb{F} . Soit $(X_n^{\mathbb{F}})_{n \in \mathbb{N}}$ la marche aléatoire λ -biaisée sur \mathbb{F} .

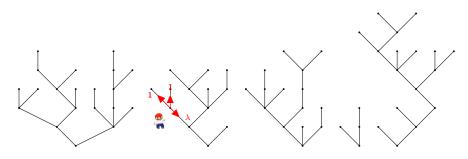


Soit \mathbb{T}_1 , \mathbb{T}_2 , ..., \mathbb{T}_n , ... une suite d'arbres de Galton-Watson de loi de reproduction μ sur-critique ($m = \mathbf{E}[\mu] > 1$) à variance finie. $\bigcup_{n \in \mathbb{N}} \mathbb{T}_n$ forme une forêt notée \mathbb{F} . Soit $(X_n^{\mathbb{F}})_{n \in \mathbb{N}}$ la marche aléatoire λ -biaisée sur \mathbb{F} .



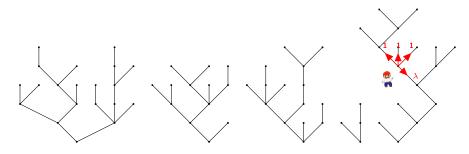
Les probabilités de transition sont les mêmes que sur un arbre.

Soit \mathbb{T}_1 , \mathbb{T}_2 , ..., \mathbb{T}_n , ... une suite d'arbres de Galton-Watson de loi de reproduction μ sur-critique ($m = \mathbf{E}[\mu] > 1$) à variance finie. $\bigcup_{n \in \mathbb{N}} \mathbb{T}_n$ forme une forêt notée \mathbb{F} . Soit $(X_n^{\mathbb{F}})_{n \in \mathbb{N}}$ la marche aléatoire λ -biaisée sur \mathbb{F} .



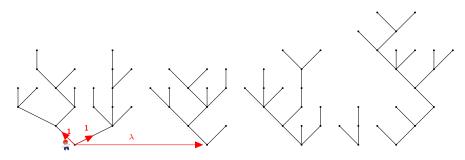
Les probabilités de transition sont les mêmes que sur un arbre.

Soit \mathbb{T}_1 , \mathbb{T}_2 , ..., \mathbb{T}_n , ... une suite d'arbres de Galton-Watson de loi de reproduction μ sur-critique ($m=\mathbf{E}[\mu]>1$) à variance finie. $\bigcup_{n\in\mathbb{N}}\mathbb{T}_n$ forme une forêt notée \mathbb{F} . Soit $(X_n^{\mathbb{F}})_{n\in\mathbb{N}}$ la marche aléatoire λ -biaisée sur \mathbb{F} .



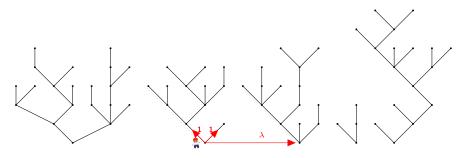
Les probabilités de transition sont les mêmes que sur un arbre.

Soit \mathbb{T}_1 , \mathbb{T}_2 , ..., \mathbb{T}_n , ... une suite d'arbres de Galton-Watson de loi de reproduction μ sur-critique ($m=\mathbf{E}[\mu]>1$) à variance finie. $\bigcup_{n\in\mathbb{N}}\mathbb{T}_n$ forme une forêt notée \mathbb{F} . Soit $(X_n^{\mathbb{F}})_{n\in\mathbb{N}}$ la marche aléatoire λ -biaisée sur \mathbb{F} .



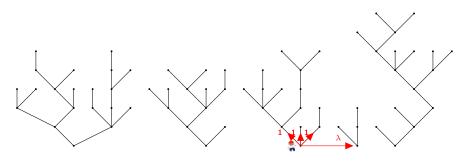
Les probabilités de transition sont les mêmes que sur un arbre. Sauf en les racines.

Soit \mathbb{T}_1 , \mathbb{T}_2 , ..., \mathbb{T}_n , ... une suite d'arbres de Galton-Watson de loi de reproduction μ sur-critique ($m=\mathbf{E}[\mu]>1$) à variance finie. $\bigcup_{n\in\mathbb{N}}\mathbb{T}_n$ forme une forêt notée \mathbb{F} . Soit $(X_n^{\mathbb{F}})_{n\in\mathbb{N}}$ la marche aléatoire λ -biaisée sur \mathbb{F} .

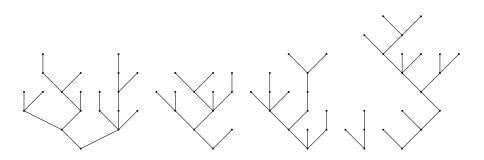


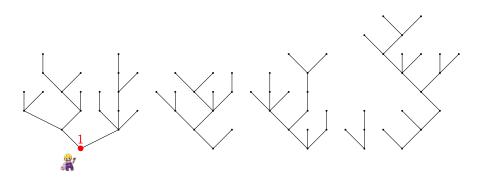
Les probabilités de transition sont les mêmes que sur un arbre. Sauf en les racines.

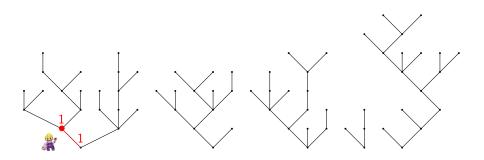
Soit \mathbb{T}_1 , \mathbb{T}_2 , ..., \mathbb{T}_n , ... une suite d'arbres de Galton-Watson de loi de reproduction μ sur-critique ($m=\mathbf{E}[\mu]>1$) à variance finie. $\bigcup_{n\in\mathbb{N}}\mathbb{T}_n$ forme une forêt notée \mathbb{F} . Soit $(X_n^{\mathbb{F}})_{n\in\mathbb{N}}$ la marche aléatoire λ -biaisée sur \mathbb{F} .

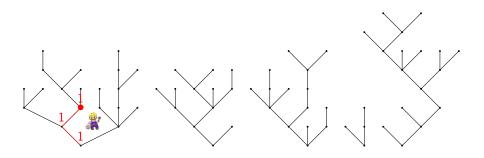


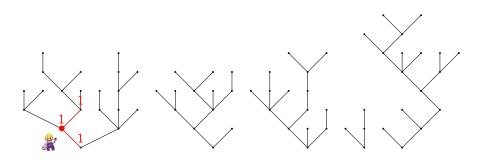
Les probabilités de transition sont les mêmes que sur un arbre. Sauf en les racines.

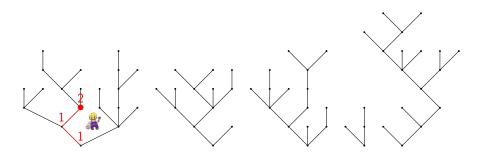


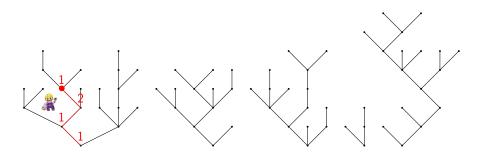


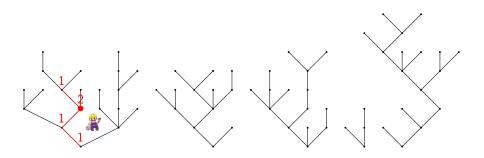


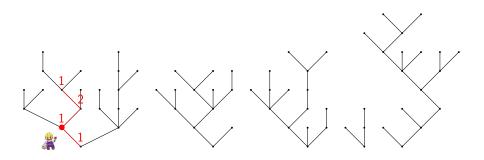


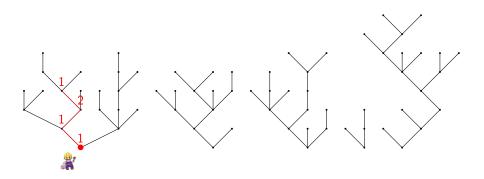


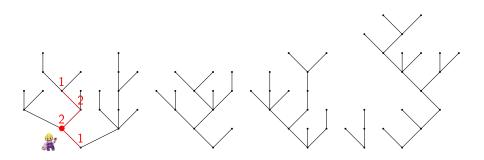


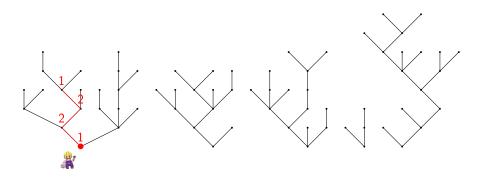


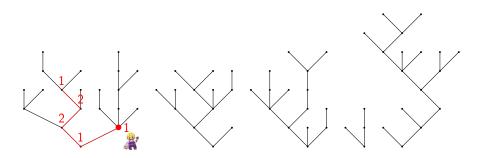


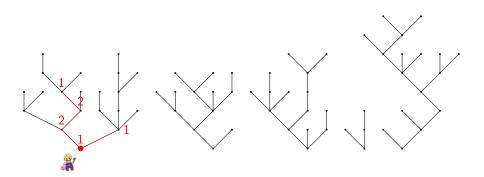


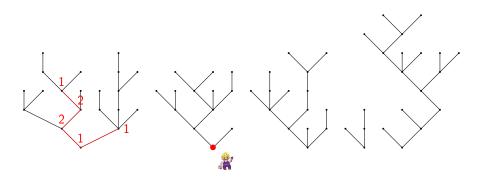


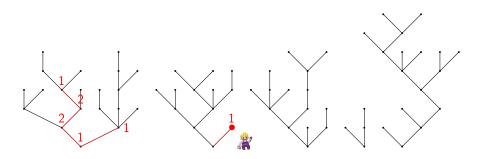


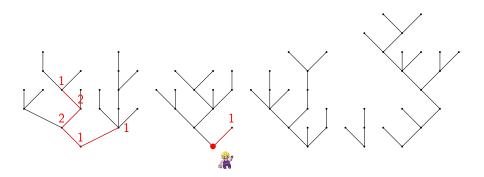


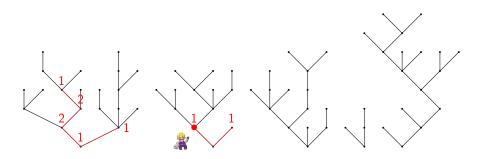


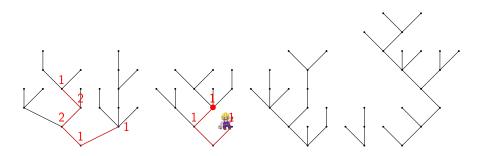


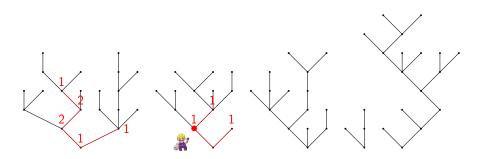


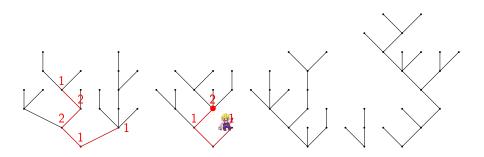


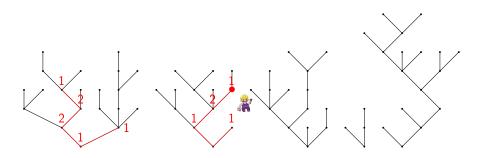


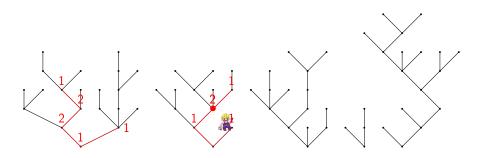


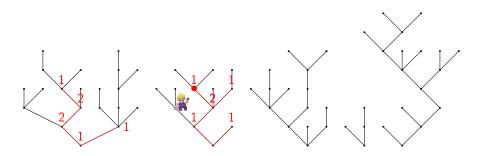


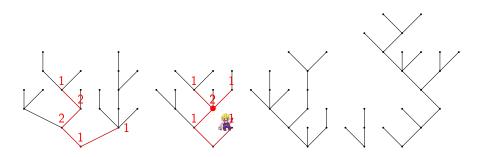


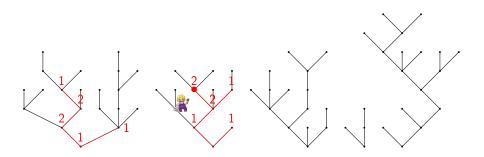


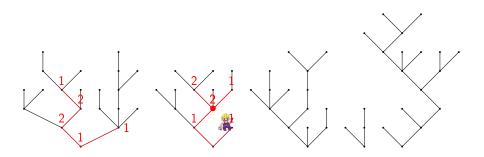


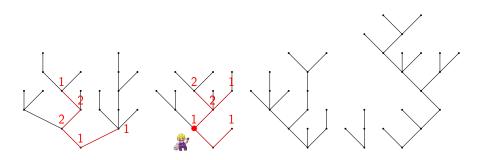


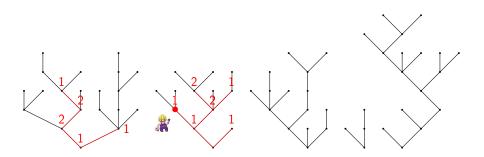


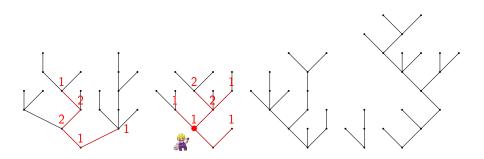


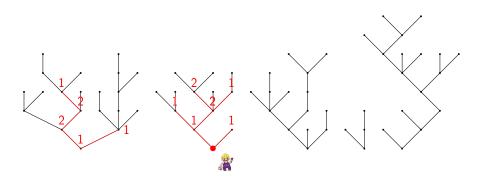


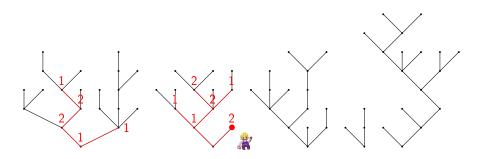


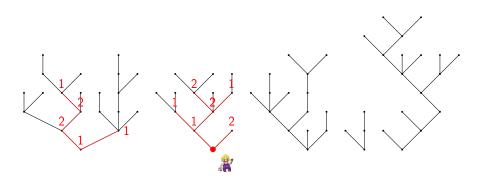


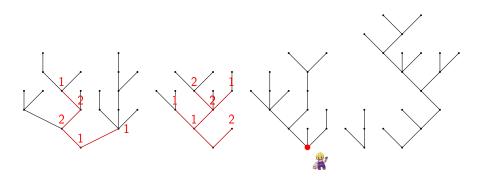


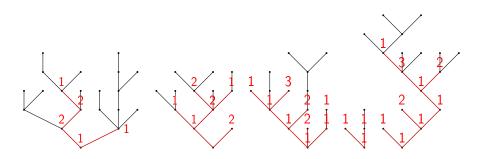


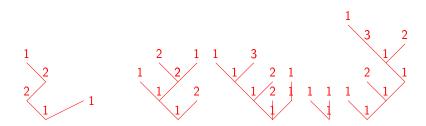


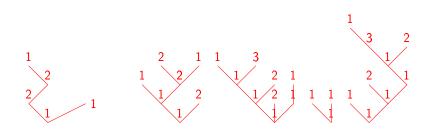




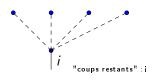


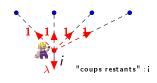


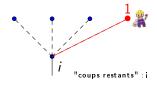


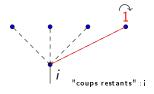


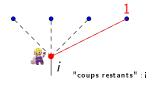
Quelle est la loi de l'arbre marqué (\mathcal{T}, β) ?

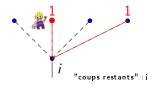


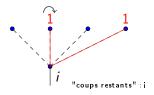


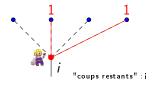


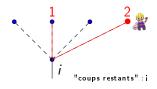


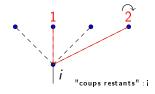


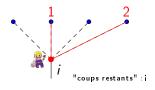


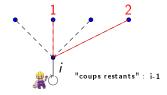


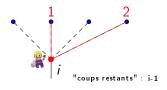


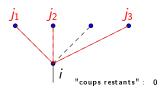




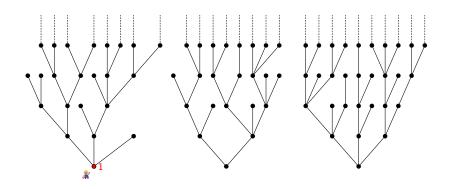


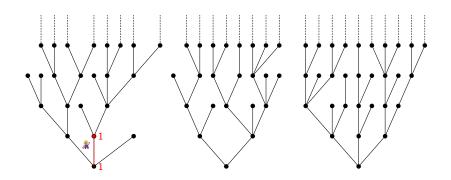


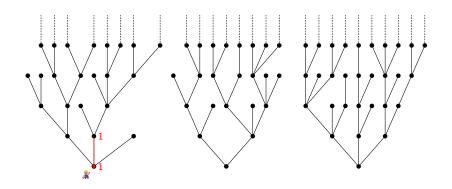


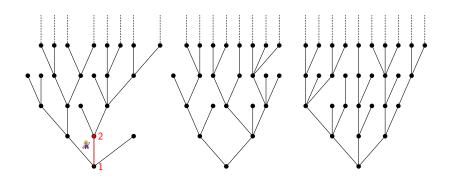


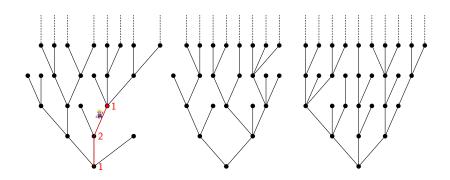


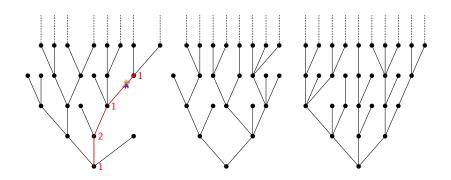


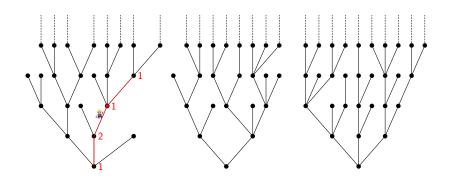


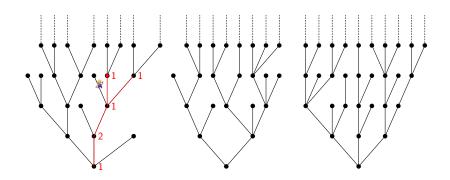


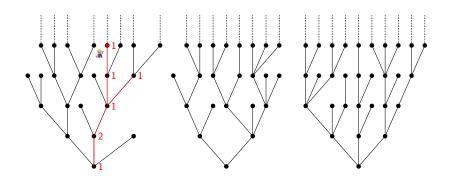


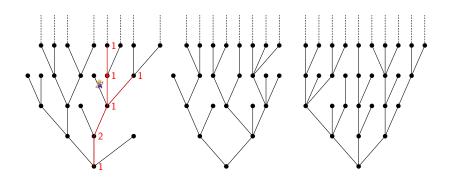


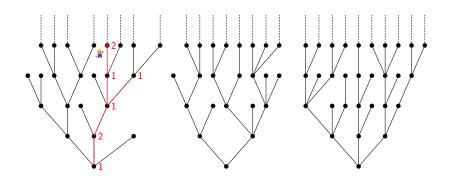


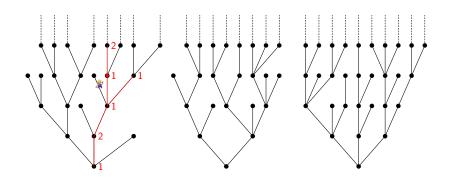


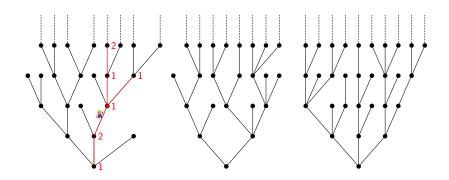


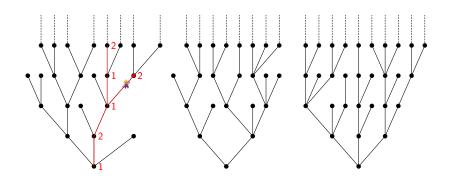


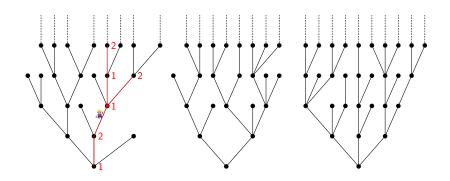


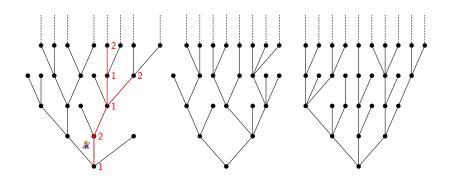


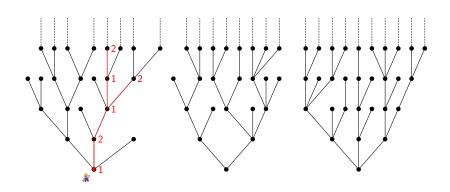


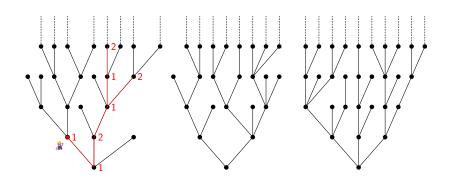


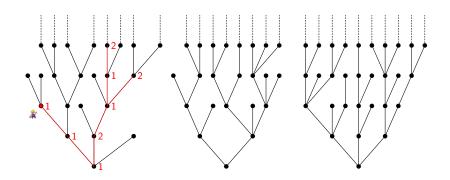


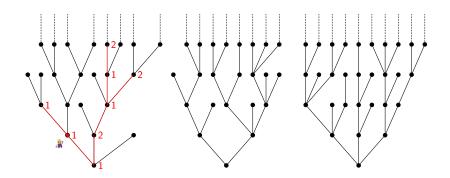


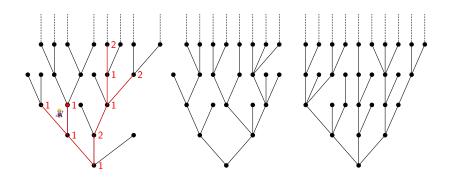


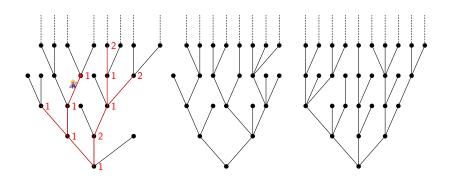


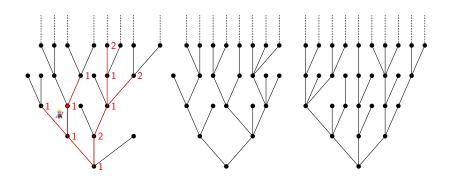


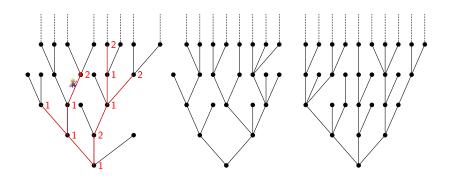


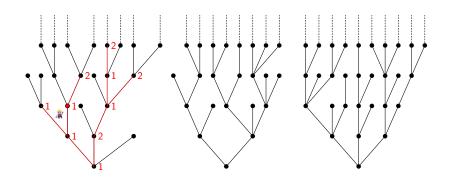


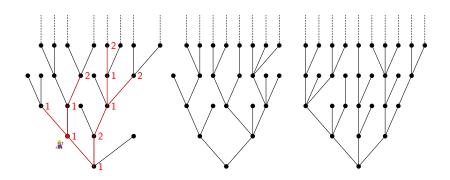


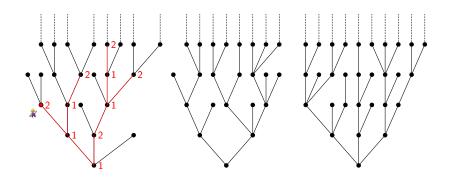


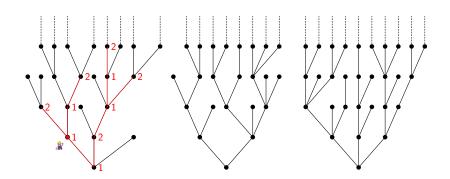


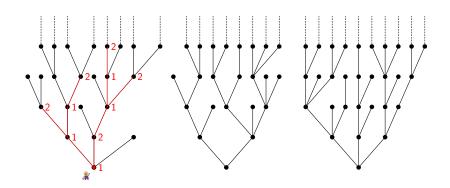


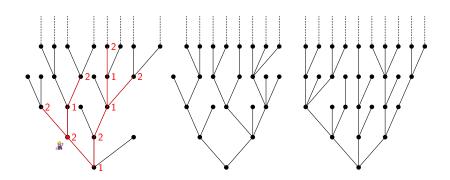


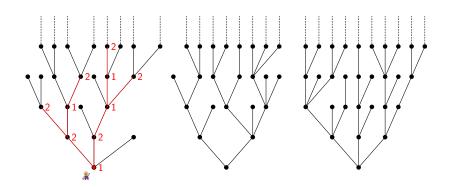


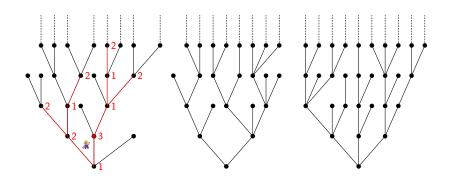


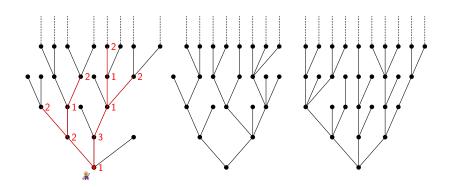


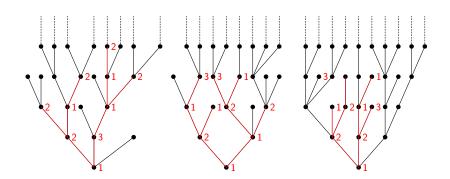




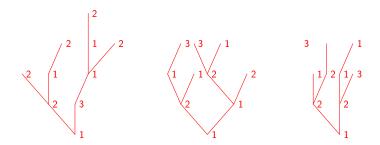




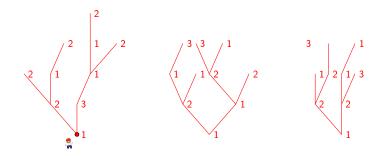




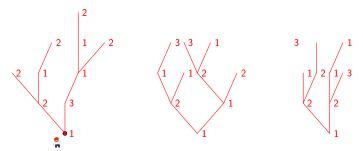
- 1) On lance la marche aléatoire, et l'on construit la trace
- 2) On ne garde que la trace,



- 1) On lance la marche aléatoire, et l'on construit la trace
- 2) On ne garde que la trace, et l'on rembobine la marche aléatoire

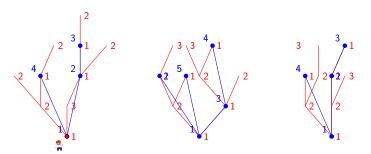


- 1) On lance la marche aléatoire, et l'on construit la trace
- 2) On ne garde que la trace, et l'on rembobine la marche aléatoire



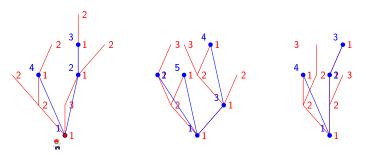
3) On construit une forêt \mathbb{F}' comme suit :

- 1) On lance la marche aléatoire, et l'on construit la trace
- 2) On ne garde que la trace, et l'on rembobine la marche aléatoire



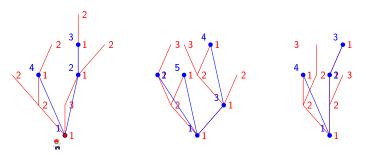
- 3) On construit une forêt \mathbb{F}' comme suit :
 - On construit la forêt de type 1 sous-jacente, re-ordonnée.

- 1) On lance la marche aléatoire, et l'on construit la trace
- 2) On ne garde que la trace, et l'on rembobine la marche aléatoire



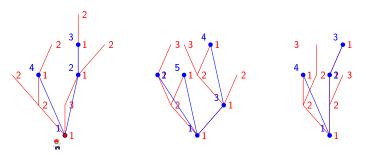
- 3) On construit une forêt \mathbb{F}' comme suit :
 - On construit la forêt de type 1 sous-jacente, re-ordonnée.
 - On lance la marche aléatoire sur $\mathbb F$ et à chaque pas de $(X_n)_{n\in\mathbb N}$, on aioute un sommet correspondant dans F', que l'on attache à

- 1) On lance la marche aléatoire, et l'on construit la trace
- 2) On ne garde que la trace, et l'on rembobine la marche aléatoire



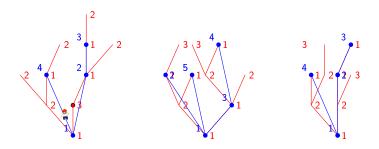
- 3) On construit une forêt \mathbb{F}' comme suit :
 - On construit la forêt de type 1 sous-jacente, re-ordonnée.
 - On lance la marche aléatoire sur $\mathbb F$ et à chaque pas de $(X_n)_{n\in\mathbb N}$, on aioute un sommet correspondant dans F', que l'on attache à

- 1) On lance la marche aléatoire, et l'on construit la trace
- 2) On ne garde que la trace, et l'on rembobine la marche aléatoire



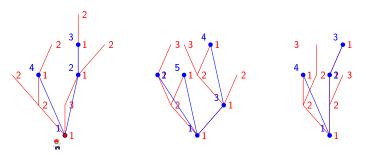
- 3) On construit une forêt \mathbb{F}' comme suit :
 - On construit la forêt de type 1 sous-jacente, re-ordonnée.
 - On lance la marche aléatoire sur $\mathbb F$ et à chaque pas de $(X_n)_{n\in\mathbb N}$, on aioute un sommet correspondant dans F', que l'on attache à

- 1) On lance la marche aléatoire, et l'on construit la trace
- 2) On ne garde que la trace, et l'on rembobine la marche aléatoire



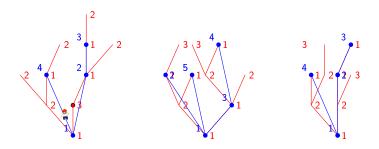
- 3) On construit une forêt \mathbb{F}' comme suit :
 - On construit la forêt de type 1 sous-jacente, re-ordonnée.
 - On lance la marche aléatoire sur $\mathbb F$ et à chaque pas de $(X_n)_{n\in\mathbb N}$, on aioute un sommet correspondant dans F', que l'on attache à

- 1) On lance la marche aléatoire, et l'on construit la trace
- 2) On ne garde que la trace, et l'on rembobine la marche aléatoire



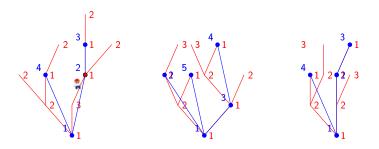
- 3) On construit une forêt \mathbb{F}' comme suit :
 - On construit la forêt de type 1 sous-jacente, re-ordonnée.
 - On lance la marche aléatoire sur $\mathbb F$ et à chaque pas de $(X_n)_{n\in\mathbb N}$, on aioute un sommet correspondant dans F', que l'on attache à

- 1) On lance la marche aléatoire, et l'on construit la trace
- 2) On ne garde que la trace, et l'on rembobine la marche aléatoire



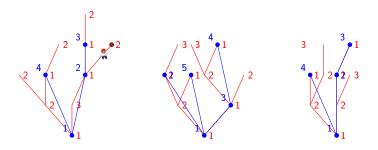
- 3) On construit une forêt \mathbb{F}' comme suit :
 - On construit la forêt de type 1 sous-jacente, re-ordonnée.
 - On lance la marche aléatoire sur $\mathbb F$ et à chaque pas de $(X_n)_{n\in\mathbb N}$, on aioute un sommet correspondant dans F', que l'on attache à

- 1) On lance la marche aléatoire, et l'on construit la trace
- 2) On ne garde que la trace, et l'on rembobine la marche aléatoire



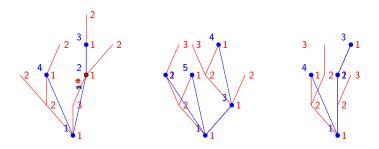
- 3) On construit une forêt \mathbb{F}' comme suit :
 - On construit la forêt de type 1 sous-jacente, re-ordonnée.
 - On lance la marche aléatoire sur $\mathbb F$ et à chaque pas de $(X_n)_{n\in\mathbb N}$, on aioute un sommet correspondant dans F', que l'on attache à

- 1) On lance la marche aléatoire, et l'on construit la trace
- 2) On ne garde que la trace, et l'on rembobine la marche aléatoire



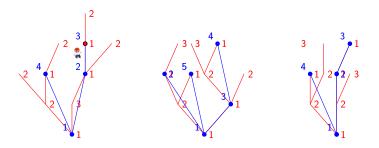
- 3) On construit une forêt \mathbb{F}' comme suit :
 - On construit la forêt de type 1 sous-jacente, re-ordonnée.
 - On lance la marche aléatoire sur $\mathbb F$ et à chaque pas de $(X_n)_{n\in\mathbb N}$, on aioute un sommet correspondant dans F', que l'on attache à

- 1) On lance la marche aléatoire, et l'on construit la trace
- 2) On ne garde que la trace, et l'on rembobine la marche aléatoire



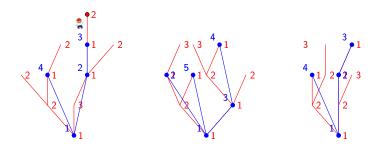
- 3) On construit une forêt \mathbb{F}' comme suit :
 - On construit la forêt de type 1 sous-jacente, re-ordonnée.
 - On lance la marche aléatoire sur $\mathbb F$ et à chaque pas de $(X_n)_{n\in\mathbb N}$, on aioute un sommet correspondant dans F', que l'on attache à

- On lance la marche aléatoire, et l'on construit la trace
- 2) On ne garde que la trace, et l'on rembobine la marche aléatoire



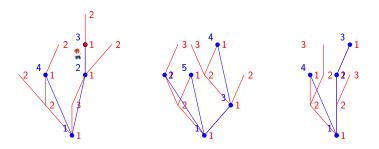
- 3) On construit une forêt \mathbb{F}' comme suit :
 - On construit la forêt de type 1 sous-jacente, re-ordonnée.
 - On lance la marche aléatoire sur $\mathbb F$ et à chaque pas de $(X_n)_{n\in\mathbb N}$, on aioute un sommet correspondant dans F', que l'on attache à

- 1) On lance la marche aléatoire, et l'on construit la trace
- 2) On ne garde que la trace, et l'on rembobine la marche aléatoire



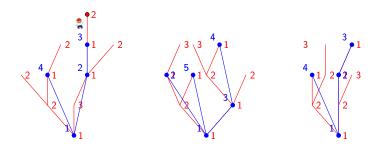
- 3) On construit une forêt \mathbb{F}' comme suit :
 - On construit la forêt de type 1 sous-jacente, re-ordonnée.
 - On lance la marche aléatoire sur $\mathbb F$ et à chaque pas de $(X_n)_{n\in\mathbb N}$, on ajoute un sommet correspondant dans F', que l'on attache à

- 1) On lance la marche aléatoire, et l'on construit la trace
- 2) On ne garde que la trace, et l'on rembobine la marche aléatoire



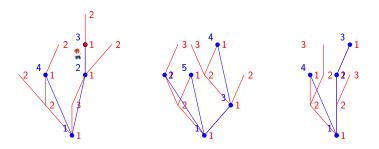
- 3) On construit une forêt \mathbb{F}' comme suit :
 - On construit la forêt de type 1 sous-jacente, re-ordonnée.
 - On lance la marche aléatoire sur $\mathbb F$ et à chaque pas de $(X_n)_{n\in\mathbb N}$, on aioute un sommet correspondant dans F', que l'on attache à

- 1) On lance la marche aléatoire, et l'on construit la trace
- 2) On ne garde que la trace, et l'on rembobine la marche aléatoire



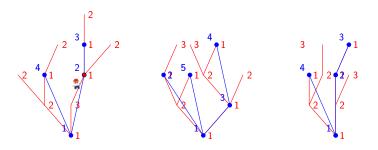
- 3) On construit une forêt \mathbb{F}' comme suit :
 - On construit la forêt de type 1 sous-jacente, re-ordonnée.
 - On lance la marche aléatoire sur $\mathbb F$ et à chaque pas de $(X_n)_{n\in\mathbb N}$, on ajoute un sommet correspondant dans F', que l'on attache à

- 1) On lance la marche aléatoire, et l'on construit la trace
- 2) On ne garde que la trace, et l'on rembobine la marche aléatoire



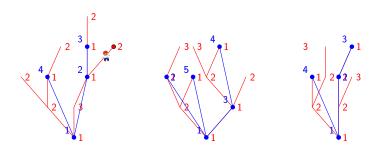
- 3) On construit une forêt \mathbb{F}' comme suit :
 - On construit la forêt de type 1 sous-jacente, re-ordonnée.
 - On lance la marche aléatoire sur $\mathbb F$ et à chaque pas de $(X_n)_{n\in\mathbb N}$, on aioute un sommet correspondant dans F', que l'on attache à

- 1) On lance la marche aléatoire, et l'on construit la trace
- 2) On ne garde que la trace, et l'on rembobine la marche aléatoire



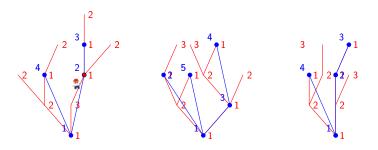
- 3) On construit une forêt \mathbb{F}' comme suit :
 - On construit la forêt de type 1 sous-jacente, re-ordonnée.
 - On lance la marche aléatoire sur $\mathbb F$ et à chaque pas de $(X_n)_{n\in\mathbb N}$, on aioute un sommet correspondant dans F', que l'on attache à

- 1) On lance la marche aléatoire, et l'on construit la trace
- 2) On ne garde que la trace, et l'on rembobine la marche aléatoire



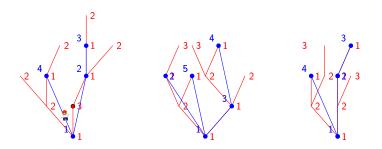
- 3) On construit une forêt \mathbb{F}' comme suit :
 - On construit la forêt de type 1 sous-jacente, re-ordonnée.
 - On lance la marche aléatoire sur $\mathbb F$ et à chaque pas de $(X_n)_{n\in\mathbb N}$, on aioute un sommet correspondant dans F', que l'on attache à

- 1) On lance la marche aléatoire, et l'on construit la trace
- 2) On ne garde que la trace, et l'on rembobine la marche aléatoire



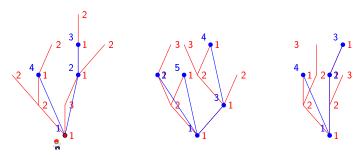
- 3) On construit une forêt \mathbb{F}' comme suit :
 - On construit la forêt de type 1 sous-jacente, re-ordonnée.
 - On lance la marche aléatoire sur $\mathbb F$ et à chaque pas de $(X_n)_{n\in\mathbb N}$, on aioute un sommet correspondant dans F', que l'on attache à

- 1) On lance la marche aléatoire, et l'on construit la trace
- 2) On ne garde que la trace, et l'on rembobine la marche aléatoire



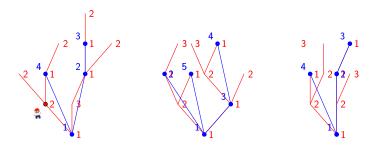
- 3) On construit une forêt \mathbb{F}' comme suit :
 - On construit la forêt de type 1 sous-jacente, re-ordonnée.
 - On lance la marche aléatoire sur $\mathbb F$ et à chaque pas de $(X_n)_{n\in\mathbb N}$, on aioute un sommet correspondant dans F', que l'on attache à

- 1) On lance la marche aléatoire, et l'on construit la trace
- 2) On ne garde que la trace, et l'on rembobine la marche aléatoire



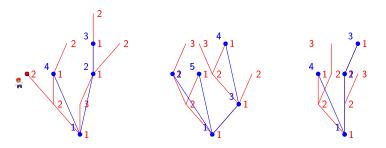
- 3) On construit une forêt \mathbb{F}' comme suit :
 - On construit la forêt de type 1 sous-jacente, re-ordonnée.
 - On lance la marche aléatoire sur $\mathbb F$ et à chaque pas de $(X_n)_{n\in\mathbb N}$, on aioute un sommet correspondant dans F', que l'on attache à

- 1) On lance la marche aléatoire, et l'on construit la trace
- 2) On ne garde que la trace, et l'on rembobine la marche aléatoire



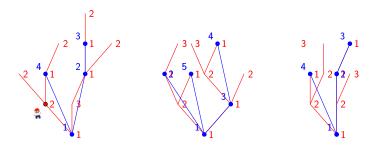
- 3) On construit une forêt \mathbb{F}' comme suit :
 - On construit la forêt de type 1 sous-jacente, re-ordonnée.
 - On lance la marche aléatoire sur $\mathbb F$ et à chaque pas de $(X_n)_{n\in\mathbb N}$, on aioute un sommet correspondant dans F', que l'on attache à

- 1) On lance la marche aléatoire, et l'on construit la trace
- 2) On ne garde que la trace, et l'on rembobine la marche aléatoire



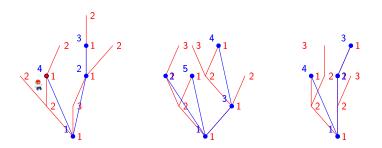
- 3) On construit une forêt \mathbb{F}' comme suit :
 - On construit la forêt de type 1 sous-jacente, re-ordonnée.
 - On lance la marche aléatoire sur $\mathbb F$ et à chaque pas de $(X_n)_{n\in\mathbb N}$, on aioute un sommet correspondant dans F', que l'on attache à

- 1) On lance la marche aléatoire, et l'on construit la trace
- 2) On ne garde que la trace, et l'on rembobine la marche aléatoire



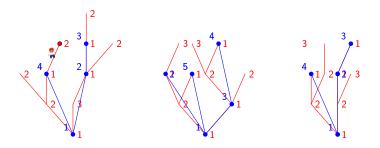
- 3) On construit une forêt \mathbb{F}' comme suit :
 - On construit la forêt de type 1 sous-jacente, re-ordonnée.
 - On lance la marche aléatoire sur $\mathbb F$ et à chaque pas de $(X_n)_{n\in\mathbb N}$, on aioute un sommet correspondant dans F', que l'on attache à

- 1) On lance la marche aléatoire, et l'on construit la trace
- 2) On ne garde que la trace, et l'on rembobine la marche aléatoire



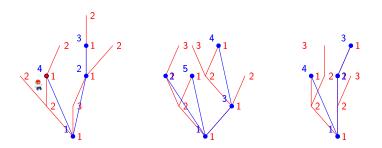
- 3) On construit une forêt \mathbb{F}' comme suit :
 - On construit la forêt de type 1 sous-jacente, re-ordonnée.
 - On lance la marche aléatoire sur $\mathbb F$ et à chaque pas de $(X_n)_{n\in\mathbb N}$, on aioute un sommet correspondant dans F', que l'on attache à

- 1) On lance la marche aléatoire, et l'on construit la trace
- 2) On ne garde que la trace, et l'on rembobine la marche aléatoire



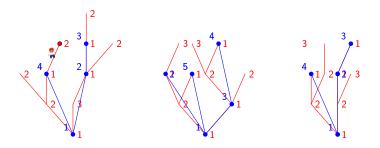
- 3) On construit une forêt \mathbb{F}' comme suit :
 - On construit la forêt de type 1 sous-jacente, re-ordonnée.
 - On lance la marche aléatoire sur $\mathbb F$ et à chaque pas de $(X_n)_{n\in\mathbb N}$, on ajoute un sommet correspondant dans F', que l'on attache à

- 1) On lance la marche aléatoire, et l'on construit la trace
- 2) On ne garde que la trace, et l'on rembobine la marche aléatoire



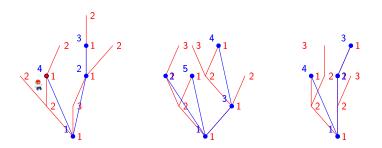
- 3) On construit une forêt \mathbb{F}' comme suit :
 - On construit la forêt de type 1 sous-jacente, re-ordonnée.
 - On lance la marche aléatoire sur $\mathbb F$ et à chaque pas de $(X_n)_{n\in\mathbb N}$, on aioute un sommet correspondant dans F', que l'on attache à

- 1) On lance la marche aléatoire, et l'on construit la trace
- 2) On ne garde que la trace, et l'on rembobine la marche aléatoire



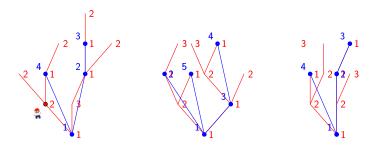
- 3) On construit une forêt \mathbb{F}' comme suit :
 - On construit la forêt de type 1 sous-jacente, re-ordonnée.
 - On lance la marche aléatoire sur $\mathbb F$ et à chaque pas de $(X_n)_{n\in\mathbb N}$, on ajoute un sommet correspondant dans F', que l'on attache à

- 1) On lance la marche aléatoire, et l'on construit la trace
- 2) On ne garde que la trace, et l'on rembobine la marche aléatoire



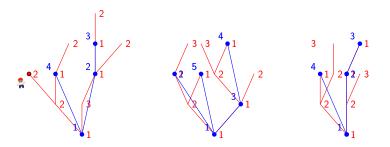
- 3) On construit une forêt \mathbb{F}' comme suit :
 - On construit la forêt de type 1 sous-jacente, re-ordonnée.
 - On lance la marche aléatoire sur $\mathbb F$ et à chaque pas de $(X_n)_{n\in\mathbb N}$, on aioute un sommet correspondant dans F', que l'on attache à

- 1) On lance la marche aléatoire, et l'on construit la trace
- 2) On ne garde que la trace, et l'on rembobine la marche aléatoire



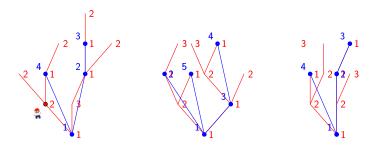
- 3) On construit une forêt \mathbb{F}' comme suit :
 - On construit la forêt de type 1 sous-jacente, re-ordonnée.
 - On lance la marche aléatoire sur $\mathbb F$ et à chaque pas de $(X_n)_{n\in\mathbb N}$, on aioute un sommet correspondant dans F', que l'on attache à

- 1) On lance la marche aléatoire, et l'on construit la trace
- 2) On ne garde que la trace, et l'on rembobine la marche aléatoire



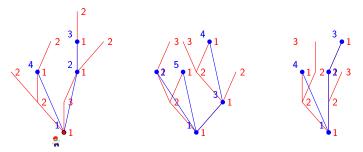
- 3) On construit une forêt \mathbb{F}' comme suit :
 - On construit la forêt de type 1 sous-jacente, re-ordonnée.
 - On lance la marche aléatoire sur $\mathbb F$ et à chaque pas de $(X_n)_{n\in\mathbb N}$, on aioute un sommet correspondant dans F', que l'on attache à

- 1) On lance la marche aléatoire, et l'on construit la trace
- 2) On ne garde que la trace, et l'on rembobine la marche aléatoire



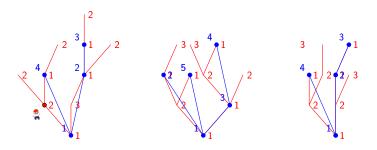
- 3) On construit une forêt \mathbb{F}' comme suit :
 - On construit la forêt de type 1 sous-jacente, re-ordonnée.
 - On lance la marche aléatoire sur $\mathbb F$ et à chaque pas de $(X_n)_{n\in\mathbb N}$, on aioute un sommet correspondant dans F', que l'on attache à

- 1) On lance la marche aléatoire, et l'on construit la trace
- 2) On ne garde que la trace, et l'on rembobine la marche aléatoire



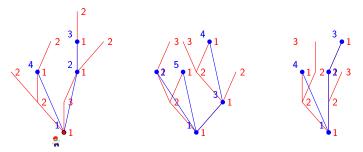
- 3) On construit une forêt \mathbb{F}' comme suit :
 - On construit la forêt de type 1 sous-jacente, re-ordonnée.
 - On lance la marche aléatoire sur $\mathbb F$ et à chaque pas de $(X_n)_{n\in\mathbb N}$, on aioute un sommet correspondant dans F', que l'on attache à

- 1) On lance la marche aléatoire, et l'on construit la trace
- 2) On ne garde que la trace, et l'on rembobine la marche aléatoire



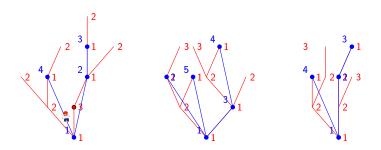
- 3) On construit une forêt \mathbb{F}' comme suit :
 - On construit la forêt de type 1 sous-jacente, re-ordonnée.
 - On lance la marche aléatoire sur $\mathbb F$ et à chaque pas de $(X_n)_{n\in\mathbb N}$, on aioute un sommet correspondant dans F', que l'on attache à

- 1) On lance la marche aléatoire, et l'on construit la trace
- 2) On ne garde que la trace, et l'on rembobine la marche aléatoire



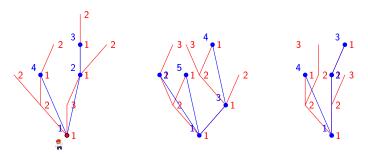
- 3) On construit une forêt \mathbb{F}' comme suit :
 - On construit la forêt de type 1 sous-jacente, re-ordonnée.
 - On lance la marche aléatoire sur $\mathbb F$ et à chaque pas de $(X_n)_{n\in\mathbb N}$, on aioute un sommet correspondant dans F', que l'on attache à

- 1) On lance la marche aléatoire, et l'on construit la trace
- 2) On ne garde que la trace, et l'on rembobine la marche aléatoire



- 3) On construit une forêt \mathbb{F}' comme suit :
 - On construit la forêt de type 1 sous-jacente, re-ordonnée.
 - On lance la marche aléatoire sur $\mathbb F$ et à chaque pas de $(X_n)_{n\in\mathbb N}$, on aioute un sommet correspondant dans F', que l'on attache à

- 1) On lance la marche aléatoire, et l'on construit la trace
- 2) On ne garde que la trace, et l'on rembobine la marche aléatoire



- 3) On construit une forêt \mathbb{F}' comme suit :
 - On construit la forêt de type 1 sous-jacente, re-ordonnée.
 - On lance la marche aléatoire sur $\mathbb F$ et à chaque pas de $(X_n)_{n\in\mathbb N}$, on aioute un sommet correspondant dans F', que l'on attache à

- $E[\sum_{|x|=1, e(x)=1} 1] = 1$
- $E[(\sum_{|x|=1} 1)^2] < \infty$
- $\mathbf{E}[(\max_{|x|=1} \ell(x))^2] < \infty$

•
$$E[\sum_{|x|=1, e(x)=1} 1] = 1$$

- $E[(\sum_{|x|=1} 1)^2] < \infty$
- $\bullet \ \mathsf{E}[(\max_{|x|=1}\ell(x))^2]<\infty$

R. '14

Dans les conditions ci-dessus, la forêt bi-type \mathbb{F}' vérifie la convergence en loi :

•
$$E[\sum_{|x|=1,e(x)=1} 1] = 1$$

- $\mathsf{E}[(\sum_{|x|=1} 1)^2] < \infty$
- $E[(\max_{|x|=1} \ell(x))^2] < \infty$

R. '14

Dans les conditions ci-dessus, la forêt bi-type \mathbb{F}' vérifie la convergence en loi :

$$\left(\frac{H_{\lfloor nt \rfloor}^{\mathbb{F}'}}{\sqrt{n}}, t \geq 0\right) \underset{n \to \infty}{\overset{d}{\longrightarrow}} \left(\frac{2}{C}|B_t|, t \geq 0\right)$$

•
$$E[\sum_{|x|=1, e(x)=1} 1] = 1$$

- $E[(\sum_{|x|=1} 1)^2] < \infty$
- $E[(\max_{|x|=1} \ell(x))^2] < \infty$

R. '14

Dans les conditions ci-dessus, la forêt bi-type \mathbb{F}' vérifie la convergence en loi :

$$\left(\frac{H_{\lfloor nt \rfloor}^{\mathbb{F}'}}{\sqrt{n}}, t \geq 0\right) \underset{n \to \infty}{\overset{d}{\longrightarrow}} \left(\frac{2}{C}|B_t|, t \geq 0\right)$$

où B est un mouvement brownien, C une constante explicite, et où la convergence a lieu pour la topologie de Skorokhod dans $\mathbb{D}(\mathbb{R}_+,\mathbb{R})$.

Merci!

et bon appétit.